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Relation to a Point Source

Recently there has been increased interest, from both the media and the public, in the question, “Is there an excess of disease risk close
to a prespecified point source?” To address this question, routinely available public health data may be analyzed. In the United Kingdom,
as in many countries, health data and the associated population data that are required for comparison, are available as aggregated
counts. In this article we propose to analyze such data using a Bayesian disease mapping framework. This framework allows the extra-
Poisson variability that is frequently encountered to be accommodated through random effects that may be unstructured or display
spatial dependence. The disease risk-spatial location relationship is modeled using a simple but realistic parametric form. The random
effects may be used for diagnostic purposes, in particular to assess the appropriateness of the distance-risk model. The choice of prior
distribution is extremely important in this context and we develop an informative prior distribution that is based on epidemiological
considerations and on additional analyses of data that are obtained from a larger “reference” region within which the study region is
embedded. We argue that a particularly useful inferential summary for public health purposes is the predictive distribution. For example,
we may obtain the distribution of the number of cases that would be expected to occur within a specified distance of the putative
source (given a population size, by age and sex, and a time period). The approach is illustrated using data from an investigation into
the incidence of stomach cancer close to a municipal solid waste incinerator. The sensitivity to the prior distribution and the presence or
absence of spatial random effects is examined. To determine whether the increase in risk detected in the study is persistent, we analyze
incidence data from the four-year interval following the study period. We finally describe a number of extensions including the modeling
of data from a number of sites using a four-stage hierarchical model. This model is statistically realistic and, more importantly, allows
the epidemiological question to be answered with greater reliability.
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1. INTRODUCTION

There is now great interest, from the public and the media
alike, in environmental health issues and, in particular, in the
possible effects of industrial pollution on health. If environ-
mental factors are playing a part in the etiology of a disease,
then we would expect “clustering” of disease cases (relative to
the population at risk) in areas where and at times when (pos-
sibly after a suitable lag) the environmental factor is present.
The following two specific questions are of great interest.

1. Does a disease exhibit spatiotemporal clustering?
2. Is there evidence that a particular spatiotemporal config-
uration of cases is a cluster?

These two questions are related. For example, knowledge that
a disease, in general, does or does not exhibit clustering aids in
the analysis and informed interpretation of an alleged cluster.
The first question is mathematically well defined (Alexander
and Cuzick 1992) and is inherently easier to answer than the
second. In this article, we are concerned with the situation in
which the second question is of the form, “Is there evidence of
increased risk close to a putative source?” Besag and Newell
(1991) refered to this as a “focused” question while evidence
for clustering is a “general” question.

Boyle, Walker, and Alexander (1996) provided an interest-
ing account of investigations of leukemia clusters and clearly
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illustrated the difficulties of interpretation associated with a
single cluster. In particular, the manner by which the investi-
gation came to light is of vital importance for an interpretation
to be placed on a statistical significance level. For example,
the analysis may have arisen as a result of an a priori epidemi-
ological hypothesis concerning the etiology of the disease, in
which case interpretation follows in the usual manner. If, how-
ever, the analysis arises in response to the public-media high-
lighting of a particular source, then the p values associated
with conventional tests are not appropriate because the same
data are being used to both generate and test the hypothesis.

In the situation examined in this article, a specific point
source is suspected to be responsible for the cluster. In this
case the hypothesis may be tested more satisfactorily if data
are available from time periods before and after the point
source became operational (allowing for a suitable lag period).
Clearly the existence of data from more than a single site
also provides far greater evidence for the existence of a rela-
tionship between a specific environmental hazard and disease
risk. Beyond the interpretative problems that lead from the
selection mechanism, there are further difficulties related to
data quality and confounding (Elliott, Martuzzi, and Shaddick
1995; Wakefield and Elliott 1999). We consider these issues
in more detail in later sections.

The generic situation we consider is that in which we have
aggregated health and population data, that is, we do not have
the exact locations of individuals with and without the dis-
ease. Case-control data in which exact locations are available
are preferable, but are more expensive to collect (aggregated
data are often routinely available), and suffer from potential
difficulties of selection bias. The regions that define the level
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of aggregation are generally defined for administrative pur-
poses and so, in terms of the exposure, are arbitrary. In general
the aggregation level of cases and populations at risk will not
be the same; Best, Ickstadt, and Wolpert (1999) and Mugglin,
Carlin, and Gelfand (1999) considered methods for dealing
with this problem.

Additional information may include area-specific con-
founders (covariates). For example, in aggregate data studies
in which individual-level data are unavailable, socioeconomic
status (SES) has been shown to be a powerful predictor of
disease risk (Jolley, Jarman, and Elliott 1992; Kleinschmidt,
Hills, and Elliott 1995). An important and difficult issue is the
interpretation of such an observation. Clearly for many dis-
eases, an area-level measure of SES may act as a surrogate
for known risk factors such as diet, alcohol consumption, and
smoking status of the individuals of the area, but the associa-
tion may have a component that is truly area level (for exam-
ple, access to health services) or is related to the experiences
of those in the area, beyond the SES of the individual (to give
a contextual variable).

We note that, in general, when group-level data are con-
sidered, there is always the possibility of “ecological bias”
because individual-level relationships coincide only with those
at the group level under strict circumstances (the groups are
areas in our context). Relevant issues include the mathe-
matical form of the risk—exposure model, the presence of
within- and between-group confounders, mutual standardiza-
tion, and effect modification (e.g., Greenland and Morgenstern
1989; Greenland 1992; Richardson 1992; Greenland and
Robins 1994).

In this article, we propose a Bayesian hierarchical model
for analysis, utilizing a simple but realistic distance-risk func-
tion (as advocated by Diggle, Elliott, Morris, and Shaddick
1997). We argue that an important aid in the assessment of
the public health implications of a point source is the predic-
tive distribution for the number of cases, a natural summary in
a Bayesian approach. The hierarchy allows the explicit mod-
eling of overdispersion (extra-Poisson variability) in terms of
random effects that may display spatial dependence. The exis-
tence of overdispersion frequently has been reported in disease
mapping studies (e.g., Mollié and Richardson 1991) and may
be due to data anomalies or unmeasured risk factors that may
or may not display spatial structure. Examples of such anoma-
lies in the numerator include double counting and underregis-
tration of cases; in the denominator, examples include under-
enumeration and migration.

To illustrate our framework, we present a case study in
which the association between stomach cancer incidence and
the distance from a municipal incinerator in the northeast of
England is investigated. Prior distributions are derived from
previous related studies and from an analysis of data from
a reference region within which the study region is con-
tained. When spatially dependent random effects are included
in the model, there is the possibility of confounding between
exposure and risk factors accounted for by these spatial ran-
dom effects. The use of informative prior distributions for the
hyperparameters of the random effects distribution allows this
possibility to be investigated by “fixing” the level of spatial
dependence.
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The structure of this article is as follows. In the next section,
the study that we consider is introduced. Section 3 contains
a discussion of previous approaches and Section 4 contains
our Bayesian approach, with subsections that consider the spe-
cific model utilized, predictive distributions, and computation.
The choice of prior distribution is extremely important and
we devote Section 5 to this topic. In Section 6, we present
our analysis of the stomach cancer data. The final section
contains a concluding discussion, including possibilities for
future work.

2. CASE STUDY—STOMACH CANCER AROUND
MUNICIPAL SOLID WASTE INCINERATORS

Elliott et al. (1996) investigated whether proximity to
municipal incinerators was associated with an increased risk
of cancer by analyzing incidence data in the vicinity of all 72
such incinerators in Great Britain for the period 1974-1986.
Pollutants emitted from municipal waste incinerators include
heavy metals (especially lead, cadmium, and mercury), acidic
gases, organic compounds, and partially combusted organic
materials. Some of these substances have been classified as
likely or possible human carcinogens. We illustrate how the
relationship between the incidence of stomach cancer and a
putative source of pollution can be investigated at one partic-
ular point source. The incinerator that we select was operable
for the period 1940-1976. Confidentiality does not allow dis-
closure of the exact location, but the site is a coastal town
in the northeast of England. We chose the site because there
was evidence of increased risk in the vicinity of this inciner-
ator. As outlined in Section 1, interpretation of the analysis is
not straightforward. However, evidence of an increase in risk
does provide a more interesting context within which issues
including the choice of prior distribution and the inclusion of
random effects, may be examined. In Section 7 we obtain data
for the period 1987-1991 so that we can address the substan-
tive question of the possibility of increased risk in the vicinity
of the incinerator under study.

The study area was chosen to be a circular region of radius
7.5 km, centered on the incinerator. The size of this region was
chosen to reflect the extent of the potential effect of emissions.
Within this region, the number of cases of stomach cancer was
determined; each case has an associated postcode. A postcode
contains, on average, 14 households. In the full study reported
in Elliott et al. (1996), a 10-year lag from the time each site
became operable was used to allow for the development of
disease (see Rothman and Greenland 1998 for a discussion
of latency periods). Estimates of the population at risk were
obtained from the 1981 decennial census. This provides, at the
time of the census, the number of individuals living in partic-
ular census-defined enumeration districts (EDs) by sex and 18
five-year age bands. An ED contains, on average, 400 individ-
uals. The study region contains 44 such EDs. Expected num-
bers, adjusting for the known risk factors age and sex (Nomura
1997) were then calculated based on national stomach can-
cer rates over the period of study. Note that EDs are larger
than postcodes and so we aggregate the case data to EDs, and
this is the ecological level of the analysis. Figure 1(a) shows
the study region with the ED centroids indicated; the radii of
the circles are proportional to the expected numbers of cases.



Wakefield and Morris: The Bayesian Modeling of Disease Risk

(b)
© o
3 o
o g~
§ % < o
£° 3o
g R
' 8 - &0‘6_/ oo \0\"‘3
O {000 o @ 00
-5 0 5 0 2 4 6
East (km) Distance (km)
(©) (d)

Deprivation Score
2 0 2 4 6 8

Observed/Expected
0123456

0 2 4 6
Distance (km)

20 2 4 6 8
Deprivation score

Figure 1.  Study Region Characteristics. (a) Positions of enumeration
district (ED) centroids in relation to the incinerator (represented by the
origin), The large concentric circle represents the extent of the study
region and the smaller circle has radius 3 km. The additional circles
are centered on the ED centroids and have radii proportional to the
expected number of cases. (b) Standardized incidence ratios plotted
versus distance. (c) An index of socioeconomic status plotted versus
distance. (d) Standardized incidence ratios plotted versus the index
of socioeconomic status. The solid lines on (b)—(d) denote lowess-
smoothers.

Table 1 summarizes the population, health, and exposure data
for the site. The standardized incidence ratio (SIR) is given by
the ratio of the observed to expected counts and is the max-
imum likelihood estimate (MLE) of the relative risk under a
Poisson model. Figure 1(b) shows the SIRs plotted versus dis-
tance with a local smoother imposed. From this plot, there
appears to be an association: EDs closer to the incinerator are
subject to increased risk.

As noted in the previous section, SES can be a powerful
predictor of disease. It is well documented that social class
is a powerful risk factor for stomach cancer (see Nomura
1997 and references therein). We utilize an area-level mea-
sure of SES derived from three census variables, namely the
proportion unemployed, the proportion of overcrowded house-
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holds, and the average social class of household, in each ED.
Each of these scores was then standardized to have zero mean
and unit standard deviation across Great Britain and the sum
was taken to give the SES score. The variable is, therefore,
continuous, with large values indicating high deprivation and
low values indicating affluence. Figure 1(c) plots the SES
index versus distance and illustrates that areas surrounding the
incinerator are relatively deprived. Figure 1(d) illustrates that,
as expected, high deprivation is associated with high risk.
The link between SES, health, and exposure to pollutants
is complex. In our analysis we are using the obvious causal
interpretation that ill health may be caused by both SES and
exposure. We acknowledge, however, that each of ill health
and environmental pollution may contribute toward higher lev-
els of deprivation. Here we assume that deprivation is not on
the causal pathway between pollution and health, that is, we
treat deprivation as a confounder. To calculate expected num-
bers that adjust for deprivation, we determine disease rates
across levels of deprivation within a reference area. Whereas
deprived individuals are more likely to live in areas of high
pollution, it is possible that these rates reflect pollution lev-
els also and so there exists the possibility that some of the
effect of pollution may be lost in a particular study. For spe-
cific disease-exposure relationships and rare exposures, this
becomes less of a problem, however (Dolk et al. 1995).

3. MODELING DISEASE RISK

We now consider how disease risk may be modeled as a
function of spatial location in relation to a point source, and
we review and highlight the shortcomings of a number of pre-
viously proposed approaches. A more detailed description of
the methods, and a more comprehensive analysis of the data
considered here using non-Bayesian approaches, can be found
in Morris and Wakefield (2000).

We first note that the ideal exposure measure is the
cumulative dose (or perhaps the dose weighted by time since
exposure) due to the pollution source received by each of the
occupants in the study region. This is clearly an unrealistic
goal. We also note that a person does not spend 24 hours a day
at their residence. In some instances, pollution monitors may
be located close to the source and the measurements obtained
from these may be combined with modeled emissions to pro-
duce concentrations of emissions by location. Such emission
modeling may be based on the characteristics of the incinera-
tor (e.g., height of chimney, speed and volume of emissions),

Table 1. Summary Statistics Across Enumeration Districts for 1974-1986

Study region Reference region

Variable Total Min Max Mean Total Min Max Mean
Population 36,824.4 314.9 1674.0 836.9 82,318.0 63.1 824.3 393.9
Expected counts 71.8 0.3 3.9 1.6 353.8 0.2 3.1 1.7
SIRs — 0 6.3 1.3 — 0 4.4 1.0
Disease counts 85 0 10 1.9 335 0 7 1.6
Socioeconomic status — -3.39 7.9 0.7 — —-4.2 71 -0.8
Distance — 0.2 6.9 25 — — — —

NOTE: The reference region is used to inform the prior distribution. Populations have been adjusted for underenumeration and so are not necessarily integers. Expected counts for the study
region have been adjusted for age and sex. Socioeconomic status is an area-level measure derived from three census variables concerning unemployment, overcrowding, and social class.
Distances are between the location of the incinerator and the population centroid of enumeration districts.
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the geography (e.g., proximity to hills and valleys), and mete-
orology (e.g., wind direction, temperature). In the future, due
to increased numbers of regulations on emissions and compul-
sory monitoring, such information may be routinely available,
but this is, in general, not true now. It is also worth mention-
ing that for cancers in particular, study periods are typically
greater than 10 years and it is rare to obtain retrospective pol-
lution information over such a long period.

Partly due to these considerations, and shortcomings in the
data (i.e., numerator and denominator inaccuracies), many of
the statistical developments over the past 10 years have con-
centrated on semiparametric modeling techniques, which make
few assumptions on the form of the risk function in relation
to a point source. In the next section we describe a number of
these techniques.

3.1 Semiparametric Approaches

A simple method for investigating these kinds of data is the
so-called near versus far analysis, where a region within a par-
ticular distance from source is chosen to define near. The dis-
ease rates in the two regions are then compared. For our data
we defined the near region as those EDs that have their cen-
troids within 3 km of the incinerator; this region is indicated
on Figure 1(a). Adjusting for age and sex in the expected num-
bers, and using a one-sided Poisson test for equality of Poisson
means, a p value of .055 was obtained. Adjusting additionally
for SES within the expected numbers, using quintiles, yielded
a p value of .074. Hence the significance is reduced after
adjustment for SES, as expected from Figure 1, (c) and (d).

There are a number of obvious drawbacks to this method, in
particular, the somewhat arbitrary choice of near and far and
the inability to include covariate information except within the
expected numbers. The choice of near and far is also likely to
be crucial in determining the power of the test.

A popular semiparametric method for investigating excess
risk close to a point source is Stone’s test (Stone 1988; Bithell
and Stone 1990). Let A,,..., A, denote the true risks in
each of n areas ranked via increasing distance from the point
source. The null hypothesis of constant risk may then be com-
pared with the alternative of nonincreasing risk as a function
of increasing distance, that is, H;: A; > --- > A,. The method
provides a p value but not (directly) a modeled distance-risk
function. Bithell (1992) provided an interesting discussion of
Stone’s test and related methods; see Morris and Wakefield
(2000) for recent extensions to Stone’s test. For our data, a
p value of .001 (obtained from 999 Monte Carlo simulations
under H,) was obtained both without and with adjustment for
deprivation. Hence this test strongly suggests that the relation-
ship between risk and distance is nonincreasing.

The foregoing methods suffer from a number of addi-
tional difficulties. First, there is a limited ability to incorporate
known information concerning the form of the risk—distance,
or more generally the risk—location, relationship. A related
problem is that it is not possible to obtain the predicted num-
ber of cases in areas at different distances from the source
and this, as we shall argue in Section 4.2, is a highly informa-
tive summary of the analysis from a public health perspective.
Finally, no account is taken of the extra-Poisson variation that
is commonly encountered in spatial epidemiology.
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Kernel methods for modeling disease risk have been consid-
ered by Bithell (1990), Kelsall and Diggle (1995a,b), Lawson
and Williams (1993), and Anderson and Titterington (1997).
These techniques are useful for exploratory analyses, but their
more formal use is hindered by the difficulties in choosing a
value for the smoothing parameter.

3.2 Parametric Approaches

A Poisson process framework for the analysis of health
data in the vicinity of a putative source was described by
Diggle (1990) in the context of case-control data, and the
extension of these models to aggregated data was provided by
Diggle, Elliott, Morris, and Shaddick (1997). Suppose that Y,
i=1,...,n, denotes the observed number of cases in each
of n areas. Further let E; denote the expected number of cases
based on the age—sex profile of the population at risk in area
iandlet Z,=(Z,,...,Z;,,)" be a vector of m area-specific
confounders. Then the Y; may be assumed to be independent
and identically distributed (iid) Poisson random variables with
mean pE;exp(Z] ¢)f(d;; 0), where ¢ = (¢,,...,¢,)", d; is
the distance between the population-weighted centroid of area
i and the point source, and p is a parameter that relates the
overall risk in the study region to that in the reference region
from which the expected numbers were calculated. Cook-
Mozaffari et al. (1989) analyzed data of this kind using a
log-linear function of distance. This model may be fitted with
standard software, but unfortunately it produces modeled risks
that decline to zero (and not baseline) as distance tends to
infinity. Regressing against the reciprocal of distance removes
this problem, but results in the risk at the source (which is a
useful summary) being undefined. For the latter model, infer-
ence may also be very sensitive to the distance between the
point source and the nearest area centroid.

The particular function used by Diggle (1990) was

f(d;; 0) = 1+ aexp(—pd}), (1)

where 6 = («, B). The model depends on just two param-
eters and provides a simple yet plausible form of relation-
ship between risk and distance. It was argued by Diggle
et al. (1997) that the quality of the data often will not allow
the consideration of more complex forms. There are many
advantages of such a parametric approach, an obvious one
being that modeled risk functions are produced, along with
associated interval estimates. Note that this model ignores
directional effects; a two-dimensional location has been sum-
marized in terms of a distance. A more complex anisotropic
model that allows for differential risk at different orientations
and nonmonotonicity in risk with distance was proposed by
Lawson (1993). Such models also may be embedded within
the Bayesian framework that we describe in the next section.
The disadvantage of a parametric approach is that inference
becomes less reliable the further the true location-risk rela-
tionship moves from the form assumed. Consequently, it is
vital to produce diagnostics that allow the appropriateness of
the model to be examined.

Two (nested) models were considered by Diggle
et al. (1997). Their “step” model is given by f(d;60) =
l+a for d <6 with f(d;0) =1 for d > 6, whereas in
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the “full” model, f(d;0) =1+« for d <8, and f(d; 0) =
1+ aexp[—((d — 8)/B)?*] for d > 5. The step model reflects
the simple near versus far model of excess disease risk, but
estimates the extent of the near—far region. The full model
allows a smooth transition between the step model and (1).
For the step and full models, 6§ = («, §) and 6 = («, B, 8),
respectively. Diggle et al. (1997) allowed for overdispersion
via var(Y;) = k x E[Y;], for i = 1,...,n, with estimation
proceeding via quasilikelihood. Hence unstructured extra-
Poisson variability is acknowledged, but not spatial depen-
dence between areal counts. To incorporate the latter via quasi-
likelihood is not straightforward (see, for example, Breslow
and Clayton 1993).

In each of the foregoing models, the parameters 6 may
be estimated by maximum likelihood estimation; this was the
approach taken by Diggle (1990) and Diggle et al. (1997).
The usual asymptotic arguments do not apply. In particular, the
discontinuous nature of the step and full models gives a non-
regular likelihood. Consequently, Diggle et al. (1997) based
inference on a Monte Carlo approach in which sampling dis-
tributions of estimators and test statistics were investigated via
simulation of replicate datasets. We prefer a reparameterized
version of (1), namely

f(d,; 0):1+aexp|:—<%)2i|, )

because in our experience the nonregularity of the preced-
ing models makes reliable inference difficult (see also Diggle,
Morris, and Wakefield 2000). Note that & = 0O corresponds to
no relationship between distance and risk.

4. BAYESIAN FORMULATION

4.1 The Model

In the context of aggregated data, our approach to the detec-
tion of excess risk close to a point source is to embed a simple
location-risk model within a disease mapping framework. For
a background to disease mapping, see Mollié (1996). In par-
ticular, we utilize the following three-stage hierarchical model.

First Stage: Data Model. For the observed count in area i

we have
Y;|A; ~ Poisson(E;A,)

with
logA; =logp+Z p+logf(d;0)+Vi+U,  (3)

for i=1,...,n. Following Besag, York, and Mollié¢ (1991),
we incorporate both nonspatial (V;) and spatial (U;) random
effects.

Second Stage: Overdispersion Model. For the nonspatial
(unstructured) random effects V,, we assume

Vi|‘73 ~ia N (0, ‘73)’

whereas for the spatial random effects U; there are a number
of possibilities. In a Markov random field (MRF) model the

81

spatial dependence is modeled through the conditional dis-
tributions U,-|Uj, j € di, where di denotes the set of neigh-
bors of area i, i=1,...,n. In a joint model, the collection
U= (U,...,U,)" is modeled via a multivariate specifica-
tion. We base our analysis on 1981 EDs. Unfortunately, the
boundaries of these regions are unavailable to us; we only have
the population-weighted centroids of each area. This restricts
the range of models for spatial dependence that we may use.
In particular, the frequently employed MRF intrinsic Gaus-
sian autoregression (IGAR) model (e.g., Besag et al. 1991),
with neighbors taken as areas with a common boundary, can-
not be employed. We choose to use a joint (stationary) multi-
variate normal spatial model. In the following discussion, let
N,(w,3) denote the n-dimensional normal distribution with
mean vector 4 and variance-covariance matrix 2, and let d;;
denote the distance between the centroids of areas i and j. We
then assume

Uloy, ¢ ~ N,(0, 075, (),

with the (i, j)th element of the correlation matrix 3, (i)
taken to be exp(—d;). The parameter ¢ > O reflects the
strength of the spatial dependence. To interpret ¢, we note
that the distance at which correlations fall to 6, 0 < 6 < 1,
is given by log(67')/¢. So as ¢ decreases, spatial corre-
lations increase. With this model, o, and o, are compara-
ble because they are both marginal standard deviations. We
note that we could utilize the IGAR model with a distance-
based definition of neighborhoods; see Best, Arnold, Thomas,
Waller, and Conlon (1999). Cressie and Chan (1989) consid-
ered distance-based weighting schemes in which the extent of
spatial dependence is assessed via a variogram.

Third Stage: Prior Distributions. At this stage, we spec-
ify prior distributions for 6, p, ¢, and for the parameters of
the second stage distribution; for model (3) these parameters
consist of o, 0,, Y.

The preceding hierarchy, with distance-risk modeled
via (2), is a nonlinear ecological regression model,
Richardson (1992) provided a general discussion of ecological
studies. Note that in the null model [i.e., the model in which
f(d; 6) =1 for all d], exp(V;) and exp(U;) represent, respec-
tively, nonspatial and spatial contributions to the residual rel-
ative risk of area i [relative to the overall risk pE; exp(Z! ¢)].

Our aim is to provide both a mechanism for accommodat-
ing overdispersion and also, via examination of the posterior
distributions of the V;, U;, a diagnostic to aid in modeling risk
as a function of distance (or more generally, spatial location).
We note that the use of spatial random effects in this context
is contentious because the true risk—distance relationship may
be smoothed away due to confounding between exposure (dis-
tance here) and unmeasured risk factors that are being accom-
modated by the U,. This issue is controversial. Lawson (1996)
advocated the modeling of spatial dependence in contexts such
as those considered here to account for both “unobserved het-
erogeneity in the environment” and the natural clusters that
occur with some diseases “due to possible genetic or even
viral aetiology.” Bithell (1996), in response, strongly opposed
this view on the grounds that “interpretation becomes more
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difficult and it is likely that estimates of the parameters of pri-
mary interest become less precise and stable as we attempt to
gain more information from modest data sets.” Due to these
issues, we address the sensitivity of conclusions by consider-
ing analyses with and without spatial random effects, and with
a range of prior distributions.

4.2 Predictive Distributions

An important public health question is, “What is the dis-
tribution of the number of health events we expect in a par-
ticular region and time period?” A predictive distribution for
the number of cases of disease that will occur is an important
aid to answering this question. Consider an area with expected
number E*, area-level covariates Z*, and area centroid a dis-
tance d* from the putative source. Here E* depends on both
the population at risk in the area and the time period under
consideration. We denote by Y* the random variable that rep-
resents the number of cases over this population and time
period. We are then interested in

Pr(Y*|data) = / Pr(Y*|A) x p(A]data) dA, @

where Y*|A ~ Poisson(AE*).
Various choices are available for the relative risk function
A. An obvious choice is

A= pf(d*; 0)exp(Z* ¢), ®)

although alternatives are available. If the area under consider-
ation is one of the original study areas, with index i* say, then
we may consider

A= pf (dy; 6)exp(ZLd + Vi + Uy), ©)

where V., U, are realizations from the posterior distribution
p(Vi, U.|data). A third possibility is

A=pf(d*; 0)exp(Z*Tp+V*+U"), (7

where V*, U* are considered to be exchangeable ran-
dom effects and are drawn from the predictive distribution
p(V, Uldata). This predictive distribution is given by

p(V, Uldata)
= [ p(VIoDp(Ulot $)p(a?. o7 ldata) do o dp.

The choice of relative risk function (5)—(7) is not straightfor-
ward and depends on the use to which the predictive func-
tion is to be put. For model checking, (6) may be preferable
because area-specific random effects for the period of data
collection are required. As discussed in Section 1, the random
effects V and U may be accounting for unmeasured risk fac-
tors and/or data anomalies. To predict the future number of
cases, if we believe that U and V are mainly accounting for
data anomalies, then we may exclude the random effects and
use (5). Persistent unmeasured risk factors again lead to the
use of (6). Finally, if we wish to acknowledge the overdis-
persion in the data, (7) may be used; this is consistent with
accounting for unmeasured, nonpersistent risk factors, and the
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possibility that data anomalies are reflected in future observa-
tions. It is straightforward to obtain a predictive distribution
for the number of cases within all of the EDs within a partic-
ular radius of the point source.

We now discuss how the excess number of cases associated
with the point source may be determined. We note that it is
not possible to determine an estimate of the excess number
of cases that result from exposure to the point source, that is,
to place any causal interpretation on the risk—distance associ-
ation. Suppose we fit the monotonic distance-risk model. We
may obtain the predictive distribution of cases using the fore-
going procedure, where the number of cases follows a Poisson
distribution with mean ), E;A; and i indexes the areas of the
region of interest. In this situation, a careful choice of A; must
be made, with (5) being the obvious candidate. We want to
compare this with the hypothetical situation in which the point
source is removed (after a suitable lag period). It is not appro-
priate to use the null model for this comparison because if
there is an increase of risk with proximity to the point source,
then this will be reflected in an increased value for p that
will produce an increased number of cases. Instead the rele-
vant Poisson mean is obtained by using the posterior distribu-
tion for p from the monotonic, and not the null, model. We
may then compare the number of cases under the two predic-
tive distributions. We illustrate such predictive distributions in
Section 6. We reiterate that an obvious difficulty here is that
p and 6 from the monotonic model may reflect risk factors
other than exposure to the emissions of the incinerator.

4.3 Computation

The model that we have specified is not analytically
tractable and so we utilize Markov chain Monte Carlo
(MCMC); see Gilks, Richardson, and Spiegelhalter (1996).
Specifically we use the BUGS software (Spiegelhalter,
Thomas, and Best 1998).

With such a sampling-based approach, it is straightforward
to evaluate the predictive distribution given by (4), because

1 S
Pr(Y*|data) ~ 3 S Pr(Y*[AY),

s=1

where A is obtained from the relevant posterior distribution.
For example, with A given by (6), we would use samples from
p(p, ¢, V., Uy, O|data). Samples from the posterior distribu-
tion of any function of interest may also be obtained, easily.
Examples that we examine in Section 6 include residuals and
the value of the risk—distance function at specified distances.

5. PRIOR DISTRIBUTIONS

In this section we describe how we specify the prior dis-
tributions for ¢, p, 6 and for the (hyper) parameters of the
distributions of the random effects U and V. In environmental
epidemiology, in general, it is not straightforward to specify
prior distributions, because the simple models that are utilized
are far removed from the exposure-confounder—disease mech-
anism. We first describe a preliminary study that we carried
out to inform the specification of the prior distribution.
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5.1 Preliminary Mapping Study

In Section 4.1 we outlined the potential problems of con-
founding between the effects of the point source and the
unmeasured risk factors being accounted for by the random
effects with spatial structure. In particular, we may dilute
the pollution effect with the inclusion of random effects. To
attempt to minimize this possibility, we carried out a mapping
study in an area that did not contain the putative source to
obtain a baseline measure of spatial variability in residual log
relative risk in the absence of the pollution source. We note
that in other types of investigation it may be more difficult to
find a region in which the exposure is not present (e.g., an
ecological study in which the exposure is the concentration of
magnesium in the water supply). This mapping study also will
give us information on the relationship between stomach can-
cer and deprivation. There is the possibility of over- or under-
adjustment for deprivation and so it is of interest to examine
the size of the association. The reference region that we use
is the census district that contains (but excluding) the study
region. This region contains 209 EDs. We obtain data on the
incidence of stomach cancer in the period 1974-1986. The
right-hand panel of Table 1 summarizes the population and
health data for this region. The expected numbers were cal-
culated via internal standardization using age—sex rates deter-
mined marginally (as opposed to a joint approach in which
these parameters are estimated simultaneously with the other
parameters of the model). When reference rates were calcu-
lated, we included the cases from the study region (which is
why the sum of the observed counts does not equal the sum of
the expected counts in Table 1). We note that this could distort
the conclusions if, for example, the study region was a large
fraction of the reference region and if the age—sex distribution
close to the incinerator was atypical compared to the region
as a whole (i.e., if the age-sex distribution is not independent
of distance). For example, if there were raised incidence close
to the incinerator and older people lived closer to the inciner-
ator, then this would produce artificially inflated rates for the
elderly.

Figure 2(a) displays the SIRs, Y;/E;, of the reference region;
we see that the SIRs are widely spread. The gap between the
two sets of areas corresponds to the circle of 7.5 km cen-
tered on the incinerator. The displayed region falls into two
pieces because the central portion corresponds to the study
region that has been excluded. From Table 1 we observe that
the maximum relative risk estimate is 4.4, and the 5% and
95% points of the empirical distribution are 0 and 2.95. In a
small-area study such as this it is well known that relative risk
estimates may be dominated by sampling variability (Clayton
and Kaldor 1987) and a hierarchical modeling approach has
been advocated to smooth the ensemble of estimates.

The disease mapping model is given by YA, ~
Poisson(E;A;), where

logh; =logp+Z{p+V,+U, (8)

for i=1,...,209. Again, V; and U; represent unstructured
and spatially dependent random effects, respectively. The mea-
sure of SES that we utilize in the main study is an index based

on three census variables (Section 2). Unfortunately this index
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Figure 2. Maps of (a) Raw Relative Risk Estimates (SIRs), and
(b) Smoothed Relative Risks From the Random Effects Model, in the
Reference Region.

was not readily available for the reference region, so instead
we use the so-called Carstairs index (Carstairs and Morris
1991). This index is census-based and is closely related to
that used in the study region, except it adds a fourth variable,
access to a car. We compared the two index for areas in which
both were available and found them to be highly correlated.
Hence it was thought that the regression coefficient for the ref-
erence region could be compared with that for the study region.

We now describe the prior distributions that were used in
the analysis of data in the reference region. For the preci-
sion parameters 0,2 and 0,2, we use the prior suggested
by Kelsall and Wakefield (1999), namely Ga(.5, .0005). This
prior often provides a realistic range of residual relative risks.
By contrast, the commonly suggested choice of Ga(.001,.001)
may lead to artificial inflation of the estimate of the random
effects standard deviation because very small values are very
unlikely under this prior. For the spatial dependency param-
eter ¢, we specify a uniform prior. We note that very small
and very large values of ¢ (corresponding to very strong and
very weak spatial dependence, respectively) will not be identi-
fiable from the data because of the finite size of the region and
the lack of areas very close together. We assume that the two
extreme dependencies that we can detect have correlations of
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r (0 <r < 1) at distances of d, and d,, to give the endpoints
of the distribution as —logr/d,, k =1, 2. The size of the ref-
erence region is 58.9 km and we take r = .01, d, =29.5, and
d, =2.95 to give the prior U(.16, 1.56).

We are particularly interested in the random effects stan-
dard deviations o, and o,. Table 2 gives summaries of the
posterior distribution for these parameters, p, ¥, and ¢, under
a range of analyses. The first two lines are comparable and
give identical inference for ¢. In the quasilikelihood model
in which var(Y;) = k x E[Y;], we obtained k = 1.42, indicat-
ing 42% overdispersion. In the joint model, we see that the
variance of the spatial random effects is much larger than the
variance of the unstructured random effects. Examination of
the spatial dependence parameter reveals that the correlations
fall to .5 and .01 at distances of approximately 0.8 and 5.2 km,
respectively, indicating short range dependence.

The estimate of the ecological regression coefficient ¢ that
describes the relationship between incidence and deprivation
is sensitive to the choice of model for the random effects.
In particular, when spatial random effects are included, the
coefficient moves closer to being significantly different from
zero, but with the opposite sign to that expected. In all cases,
the 95% interval contains zero, however.

Figure 2(b) displays the posterior means of the relative risks
after global and local smoothing (corresponding to the inclu-
sion of unstructured and spatial random effects, respectively)
have been carried out using the hierarchical model. Compari-
son with Figure 2(a) reveals that the spread in the relative risk
estimates is far narrower. For example, there is 2.4-fold vari-
ability between the 5% and 95% percentiles of the empirical
distributions of the posterior means of the smoothed relative
risks (the actual values are .6 and 1.43).

5.2 Prior for p

The parameter p is a nuisance parameter that reflects the
overall incidence in the area relative to the reference region
that provides the rates for the expected numbers. For the null
model, the MLE of p is given by Y, /E, where E, =) E;
and E; =} ;N;p;, and so we may obtain an approximate
range for p by considering how large or small we might expect
Y, to be. For example, if the probabilities of disease were
twice as great across the study region when compared to the
reference region, then we would have p = 2. We specify the
normal prior N(M,, V,) for logp with M, =0 and V, = .25.
This prior gives, for example, Pr(.5 < p <3) =.903. We note
that, with respect to this parameter, the likelihood is well
behaved and so we often will be able to specify a relatively
flat prior.

5.3 Prior for ¢

We now consider the regression coefficients that describe
the relationship between confounders and risk. We assume that
the priors for each regressor are independent and as a generic
confounder suppose that a measure of SES is the covariate
under consideration. We assume that the prior for ¢ is a nor-
mal distribution with mean M, and variance V,,. One method
for selecting M and V, is the following. We first set M, =0
and then suppose that AR is the maximum ratio of risk that is
thought to be possible between the most deprived (Z,,,) and
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the least deprived (Z,,;,) areas. This ratio should be informed
by background epidemiological knowledge and, in particular,
previous studies. Then, whereas the risk in an area with an
expected number of cases E is given by pEf(d, 0) exp(ZT ¢),
we have

AR > exp[¢(Zinax = Zuin) ] ©)

which gives
log(AR)

b o
Zmax -Z

Let ¢, = |10g(AR)/(Z,,.x — Z1in) |- To place this largest pos-

sible value that may occur in the tail of the prior, we set

3\/ V_¢ = ¢, Alternatively, we may use a reference analysis

to provide prior information.

The variance was determined using figure 1 of Elliott (1996)
in which the ratio of stomach cancer incidence displays an
approximate twofold increase from the least to the most
deprived quintiles (which is consistent with Nomura 1997).
For our data, we have the same score, but on a continu-
ous rather than a discrete scale. We therefore use AR =3 in
Equation (9), from which we obtain V; = .045%. This gives a
95% prior interval of (—.088, .088). We note that this interval
contains the posterior medians from the reference analysis in
Table 2.

min

5.4 Prior for 02, 02, and ¢

The priors for the variance components o> and o> are cho-
sen to be inverse gamma distributions. We utilize two sets
of priors: an uninformative set that consists of Ga(.5,.0005)
priors (discussed in Section 5.1) for both precisions; and an
informative set in which the priors for o2 and o> are derived
from the preliminary study. Specifically, we match up the 5%
and 95% points of the prior distributions with the posterior
distributions obtained from the preliminary study. Following
this procedure, we obtain prior distributions o, * ~ Ga(1.0, .1)
and 0,2 ~ Ga(.5, .0005). Hence for the latter we see that the
posterior and prior were identical in the preliminary study.

For ¢ our default choice for the study region is the uniform
distribution U(1.2, 12.3). These endpoints are based on the
procedure outlined in Section 5.1 with r = .01, d, =3.75, and
d, =.38.

Note that the priors for the variances are independent of the
distance-risk model that we are using because the overdisper-
sion is that which is inherent in the incidence of stomach can-
cer, even though we would expect the values of the variance
components to decrease as we increase the complexity of the
model.

5.5 Prior for «

For both of the parameters of interest, & and 3, we con-
centrate on the likelihood function by using uniform prior dis-
tributions. For o we take a uniform prior distribution on the
range (—1, @,,,) with a,,,, taken to be the maximum plausi-
ble increase in risk at source based on current epidemiological
knowledge. In studies of environmental pollution from point
sources, the increases in risk are often modest (unless there
is an accident that results in a large increase of pollutants).
Occupational studies tend to produce much larger increases.
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Table 2. Posterior Quantities, 50% (2.5%, 97.5%) for the Disease Mapping Analysis of the Reference Region

Random effects model/ p g, 1 ¢
Quasilikelihood 0.93 (081, 1.1) — — —0.025 (-0.083, 0.033)
Unstructured — 0.85 (0.72, 0.99) 0.43 (0.024, 0.64) — — —0.025 (-0.085, 0.032)
— Spatial 0.77 (05, 1.0 0.38 (0.11, 0.65) 0.96 (0.25, 1.5) —0.059 (-0.13, 0.0049)
Unstructured Spatial 0.75 (0.55, 0.96) 0.035 (0.015, 0.37) 0.39 (0.21, 0.63) 0.88 (0.23, 1.5) —0.062 (-0.13, 0.0029)

A number of point source studies have been carried out by
the Small Area Health Statistics Unit in the United Kingdom.
Examples include all incinerators of waste solvents and oils
in Great Britain (Elliott et al. 1992a), a single petrochemi-
cal works at Baglan Bay, Wales (Sans et al. 1995), radio and
TV transmitters (Dolk et al. 1997a,b), cokeworks (Dolk et al.
1999), a pesticides factory (Wilkinson et al. 1997), and indus-
trial complexes that include major oil refineries (Wilkinson
et al. 1999). These have reported excesses in risk at source
in the range 0.1-1.0, which gives us a lower bound on the
size of a,,,. In Elliott et al. (1992b), a point source study
was carried out to investigate increased risk of mesothelioma
in the vicinity of Plymouth docks. This analysis revealed an
estimated excess of 11 at source, but further analysis revealed
that this excess was due to occupational, rather than environ-
mental, risk factors.

5.6 Prior for B

As a prior for B we take a uniform distribution on the
range (0, B,a)- To determine SB,,,, we think in terms of the
more intuitive distance-risk function. In particular, we spec-
ify two values, r and ¢, such that at a distance r x d,,
(0 < r <d,,,) we believe that the risk will have fallen to
below 1+ ga(0 < g < 1). The size that was chosen for the
study region aids in this choice. This formulation implies that

(rdmax)2
f(rdy) =1+qga>1+aexp [_T] ,
which gives

rdmax
(—logq)'*

Figure 3 shows 20 simulations from the prior distribution
with d,,, = 7.5 km, a,, = 10, and B,,, = 3.15. The latter
is derived from the choices r = .9, ¢ = .01 and corresponds
to the belief that at a distance of 6.75 km from source, the
excess risk will be less than 1% of the excess at source. Note
from the figure that, as desired, all of the simulations from
our model produce negligible risk by 7.5 km. If this were not
true, then a larger study region would need to be chosen.

In Section 6 we address the sensitivity to the prior by con-
sidering values of a,,,, in the range 2-20 and values of 8
in the range 1-7.

B =B =

max

6. FULL ANALYSIS

In this section we use the prior distributions of the previous
section and carry out analyses of the stomach cancer incidence
data in the proximity of the incinerator. The analyses were
carried out using the MCMC strategy outlined in Section 4.3.

Convergence was assessed via informal assessment of poste-
rior summary distributions across two chains started from dif-
ferent points in the parameter space. On this basis, a burn-in
of 1,000 iterations was used and, depending on the model, a
further 30-50,000 iterations produced samples that were used
for inference.

Table 3 summarizes the posterior distribution under various
prior specifications. When we pass from the null to the mono-
tonic model, the posterior median of the nonspatial lack of fit
o, is reduced from .052 to .044, whereas the corresponding
reduction for the spatial standard deviation o, is .50 to .29.
This shows how the unexplained variability is explained by
the distance-risk relationship.

We note that again the estimate of the regression coefficient
¢ is sensitive to the choice of random effects distribution and
on the prior. Again all 95% intervals contain zero, however.
Given that, if anything, the relationship was reversed in the
reference study, we should investigate whether we are overad-
justing for deprivation. The danger is that deprivation has little
effect here and, in fact, the effect of the incinerator is being
reduced by allowing some of the excess risk to be absorbed
into ¢ (see Fig. 1). We carried out an analysis in which ¢
was fixed at the posterior mean from the reference analysis
—.062, but again there was little sensitivity in the parameters
of interest (Table 3).

We also carried out a number of analyses to investigate
the effect of the prior on . Although ¢ was sensitive to the
choice, there was little change in inference on « and 8 when
various uniform priors on ¢ were taken (Table 3 displays the

10

Relative Risk

o]
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Distance from Source (km)

Figure 3. Twenty Simulations From the Prior Distribution of the
Risk-Distance Relationship. Prior specifications (see text) were d,,,, =
7.5 km, o, =10, B =3.15, r=0.9, and g =0.01.
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Table 3. Posterior Quantiles, 50% (2.5%, 97.5%), for the Full Analysis of the Study Region. The Fixed Values
Correspond to the Posterior Medians From the Reference Analysis
Model Random  Prior a B p o, a, ] ¢
effects dist.

Null Vi+U; 1 — — 0.98 (057,15  0.052 (0.014,058) 0.50 (0.21,1.0) 8.9 (231200 0.053 (-0024,0.12)
Monotonic Vv, 2 6.4 (21,980 0.43 (028,071) 0.91 (067,120 0.048 (0014,042) — — 0.0010 (-0.061,0.067)
Monotonic U, 2 6.4 (21,98 0.43 (0280700 0.90 (0.64,1.2) — 0.045 (0.014,0455 6.8 (15120 0.0012 (-0.061,0.068)
Monotonic V,+U; 2 6.3 (20,98 0.43 0280729 0.91 (067,120 0.045 (0014,037) 0.041 (00140300 6.7 (15120 0.0015 (-0.061,0.067)
Monotonic V,+ U, 1 5.9 (12,98 0.45 (0251800 0.84 (046,1.3) 0.044 (014,035 0.32 (0.16,0.78) 75 @s121  0.0031 (-0.085,0075)
Monotonic Vi+U; 1 7.6 (29,99 0.48 (030,1.100 0.85 (050,1.3)  0.047 (0014,041) 0.30 (0.15,0.72) 7.04 (15,121) —0.062 (fixed)
Monotonic V,+U; 1 6.4 (20,98 0.43 (0280769 0.87 (055,169 0.046 (00130477 0.29 (0.15,0.80) 0.88 (fixeq) 0.00050 (-0.062, 0.071)

*Prior distributions are 1, informative or 2, uninformative.

case in which ¢ was fixed to the posterior median from the
preliminary study).

The posterior marginal distributions for p, «, B, p, 0,
and o, for the analysis with the informative prior are dis-
played in Figure 6. The prior distributions are also presented
on this plot. These histograms are useful and easily con-
structed using the MCMC sampling-based approach. Profile
likelihoods, which are the classical equivalent, are far more
difficult to determine for models such as those considered

here. It is clear from Figure 6(c) that there is very little infor-
mation in the data concerning an upper value for a. With
the MCMC approach, it is straightforward to make statements
such as Pr(a > O|data) = .999. We also note that, as was our
aim, the posterior distributions of the random effects variances
[panels (e) and (f)] are close to their prior distributions.
Figure 5 shows the 5%, 50%, and 95% posterior intervals
for the fitted curve f(d, 0) versus d, along with the MLE
from the quasilikelihood approach outlined in Section 3.2.
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Posterior Distributions for (a) p, (b) ¢, (c) «, (d) B, () o,

and (f) a,. The solid line represents the prior distribution.
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Figure 5. Bayesian Median Point Estimate (solid line) and MLE
(dashed line) of Modeled Risk Function. Also shown is a Bayesian 95%

credible region (dotted lines). For clarity, the distance axis has been
truncated at 2.5 km.
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The posterior summaries were constructed as follows. A
parameter of interest f(d; §) was defined for a fine dis-
cretization of distances d. The posterior distribution of the
risk function was then summarized by substituting samples
09,s=1,...,S, from p(f|data) into f. The upper endpoint
of the interval estimate for small values of d again indicates
the lack of information in the data with regard to an upper
value for «. Notice that the 90% interval is above unity to a
distance of approximately 300 m and that the increased risk at
source decreases rapidly with distance. This observation indi-
cates that the study region was chosen to be large enough
and any effect is very localized. Almost identical plots were
obtained from analyses with and without spatial effects. We
note that the results are highly influenced by SIRs of 6.49 at
a distance of 0.2 km and 5.98 at 0.45 km. It would be advis-
able to check the cases in these areas because data anomalies
will have large influence.

Figure 6 shows the posterior medians of the error terms
V,,U,i=1,...,44, plotted against distance for the null and
monotonic models. A plot of these random effects against
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Figure 6. Posterior Medians of the Random Effects V, (crosses) and U; (circles), i =1,...,44. The left panel displays the random effects for
the null model, and the right panel displays the random effects for the monotonic model.
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orientation showed no systematic pattern (hence providing
some justification for our simple isotropic model). The differ-
ences in the ranges between the left and right panels shows
the improvement in fit from incorporating the distance-risk
model. We also calculated the posterior distributions of the
Bayesian first-stage residuals given by (Y; — E;A;)/(E;A;)">.
These showed the same pattern as the second-stage resid-
uals V,, U, although the latter were more informative here
because the first-stage residuals are difficult to interpret for
small counts because they may take only a small set of values.

Figure 6 displays the sensitivity of the posterior distribu-
tions for @ and B to the upper limits on the uniform priors,
o and B.... We see that the prior does have an influence,
although there is reasonable stability for B in the range (1,
6). For a, the upper quantiles are particularly sensitive to the
prior and essentially remain close to «,,,.. As previously com-
mented, this reflects the fact that there is little information in
the likelihood due to the sparsity of data close to source (both
in terms of the number of EDs that are close and the size of
the expected numbers in these EDs).

From an epidemiological perspective, the modeled risk
function is of obvious interest, but from a public health per-
spective, the predicted number of cases of stomach cancer can
be highly informative. Figure 8 shows the predicted survivor
functions Pr(Y; > y|data) (y =0,1,2,...) for four EDs at
various distances from the incinerator and under the null and
monotonic models. From this plot we may, for example, state
that the probability of 5 or more deaths in an ED whose cen-
troid is .2 km from the source and over the same time as the
data collection period is virtually zero under the null model,
but approximately .7 under the monotonic model.

For illustration, we compare predictive distributions for the
number of cases over the whole study region with and with-

p(aldata)

20 30 40

amaz
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out random effects. The expected numbers were taken as those
in the study that correspond to the predictions being over the
same population and number of person years as the study.
When we include random effects, we sample U, V from the
predictive distribution of random effects, rather than the pos-
terior for p(U, V|data). This approach is consistent with the
random effects representing risk factors that are randomly dis-
tributed across areas and not specific to the areas under study.
Table 4 gives predictive distribution summaries under a vari-
ety of models. As expected from the discussion in Section 4.2,
under the null model the predicted number of cases is almost
exactly equal to the number observed. In the null model, the
posterior median of p is .98, whereas in the analysis in which
the monotonic model was used, the estimate was .87. When
random effects are included, the predictive distribution is far
wider. Comparisons between the last four lines of the table
indicate a difference of approximately 18 cases between the
predictions with and without the monotonic risk model.

7. DISCUSSION

In this article, we have taken a Bayesian approach to the
modeling of disease risk in relation to a point source. We have
embedded the approach of Diggle et al. (1997) within a hier-
archical framework. This hierarchy includes random effects
that allow for spatial and nonspatial overdispersion and may
be used as diagnostic tools to aid in model refinement. With
this framework, the full range of Bayesian techniques can be
utilized to provide informative analyses. In particular, we have
stressed the incorporation of prior information and predictive
distributions for inference, and considered the assessment of
model adequacy and sensitivity analyses. We now describe a
number of extensions and issues.
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Figure 7.  Sensitivity of Posterior Distributions for (a) « (as a function of a,,) and (b) B (as a function of B,.,). Solid lines denote y = x.
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Figure 8. Predictive Survivor Functions, S(y) =Pr(Y > y|data), y =
0,1,2,..., of the Number of Cases for Enumeration Districts at Dis-
tances From the Point Source of Pollution of (a) 0.2 km, (b) 1.1 km,
(c) 4.5 km, and (d) 6.9 km. The solid line represents these functions
for the monotonic model, the dashed line for the null model, and the
dotted line from the posterior under the monotonic model but with the
distance-risk relationship removed.

Point Data. 1If point data are available, then a Bayesian
version of the Bernoulli model of Diggle and Rowlingson
(1994) can be implemented in a straightforward manner (see
Diggle et al. 2000).

Socioeconomic Status. It is well documented that SES
can be a strong predictor of health outcomes (e.g., Jolley
et al. 1992). Here we have used a nonspecific measure (the
Carstairs index), although it is strongly predictive of stomach
cancer incidence (Elliott 1996). The explanation of the strong
relationship between area-level measures of SES and health
remains an important and challenging problem.

Errors in Variables. In general, in spatial epidemiology
many of the important components of the model that are
treated as fixed are in fact estimates. For example, the health
data may be subject to double counting, underascertainment,
and coding errors and the population data may be subject to
migration and underenumeration. Best and Wakefield (1999)
have examined various models for numerator and denominator
errors in the context of a mapping study. Exposure measures
may be modeled or based on extrapolation, and confounders
such as SES may be based on census data determined only
on specific occasions. Exposures and confounders may also
be measured on individuals even though the health and popu-
lation data are measured at the area level. Often exposure and
confounder variables are incorporated directly into the model
without acknowledging that these variables are actually esti-
mates. Each of these misspecifications can be modeled using
an errors-in-variables approach. MCMC is then a very natural
way to carry out the computations, because the required con-
ditional distributions are of simple form. Richardson and Gilks
(1993) provided a discussion of errors in variables in epidemi-
ology from a Bayesian perspective. Unfortunately, validation
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data are rare in the context considered here and the approach
should be viewed as a sensitivity analysis.

More Realistic Disease Risk—Location Models. The
relationship between disease risk and spatial location has been
assumed to be of simple form. A more complex form, for
example, taking into account directional effects, may also be
incorporated into our framework, but extensive data are likely
to be required to support such a model. In Section 6 we saw
great sensitivity to the prior distribution for «, indicating that
there is little information in the data for even this very simple
model. In general, a modeled pollution surface is preferable
to a simple distance measure of exposure.

Prior Choice. The choice of prior distributions in spatial
epidemiology remains a challenging issue. In Section 5.1 our
uninformative priors for o, and o, were taken to be identical,
although it is not clear that this in any way reflects placing
equal prior weight on unstructured and spatial random effects.
Independent priors on the two variances may not always be
appropriate also.

Data From Many Sources. In the original study (Elliott
et al. 1996), data from all 72 municipal incinerators in Great
Britain were analyzed. The analysis of the totality of this data
clearly make the substantive conclusions far stronger. A nat-
ural method for analyzing these data is the following. Let
0,, denote the parameters of the k =1, ..., 72 incinerators,
parameterized so that each of the elements lies on the whole
of the real line [e.g., 8 = (log(a —1),log B)T for model (2)].
These parameters could then be assigned a distributional form,
for example, 6, ~ N(W,u, %), where W, denote incinerator—
study area-specific covariates such as height of chimney—
speed of emissions—prevalent wind direction (where such data
exist). In other words, separate populations of incinerators
are defined. The parameter u summarizes the average values
and the effect of covariates on 6. Elements of the variance—
covariance matrix 3 summarize the variability of the elements
of 0 across all incinerators. This model alleviates the need to
specify a strongly informative prior distribution for 6 because
the data from all sites would choose the appropriate normal
distribution, with priors specified for u and 3. The effects of
confounders could also be allowed to vary between different
point sources. For example, deprivation may have a different
interpretation in different health regions. These models could
be fitted in a straightforward manner using MCMC methods.

Table 4. Median of Predictive Distribution (5% and 95% Quantiles) for
the Number of Cases in the Study Area With the Same Populations
and Over the Same Time Period (so that the expected numbers are

identical to those in the study)

Model Random effects Predictive summary
Null Not included 84 (61, 111)
Null Included 73 (25, 183)
Monotonic Not included 85 (61, 111)
Monotonic Included 83 (43, 169)
Monotonic f Not included 66 (45, 90)
Monotonic f Included 64 (32, 125)

NOTE: The label “Montonic f” denotes that the predictions were obtained using p from the
monotonic model but with flat risk [i.e., f(d; 6) = 1; see text for details].
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Such a modeling approach, combined with predictive distri-
butions, provides an aid in the determination of the potential
health effects of a new point source exchangeable with those
already examined.

Dolk et al. (1998) use a simple form of this model in a
study of congenital malformations in the vicinity of landfill
sites across Europe. In their analysis, the excess near to each
landfill was assumed random across sites.

Substantive Findings. In this article, we have suggested a
hierarchical framework within which point source data may be
analyzed. Our approach was illustrated using data from a sin-
gle incinerator. In the full study, Elliott et al. (1996) examined
a range of cancer endpoints across all 72 incinerators in Great
Britain and found limited evidence of an excess. Examination
of the available case notes and histopathology of liver can-
cer cases has produced refined estimates of the excess (Elliott,
Eaton, Shaddick, and Carter, 2000).

We selected our study area purposefully to illustrate our
methodology on an interesting dataset. As a postscript we
obtained data from a period immediately following the study
period (1987-1991). The incinerator in question closed down
in 1976. There were limited data available (22 cases in the
study region) and we used data from the county (which is
larger than the previously used reference region) to obtain
rates for the expected numbers. Population data were obtained
from the 1991 census. We included unstructured random
effects only and used the default prior distributions of Section
6. In particular the prior on @ was uniform on the range
(—1, 10). The posterior median for @ was 2.9 with 95% inter-
val (—0.4,9.2). Hence, there does not appear to be strong
evidence for a persistent increased risk. Interpretation is again
difficult, however, because the period of study was greater
than 10 years after closure of the incinerator and it is not clear
how many new cases would result from previous exposure (in
particular when we consider migration). Information on the
residence history of the cases would be particularly useful. In
general, evidence of a persistent increased risk is consistent
with both a long latency period and the existence of unmea-
sured risk factors that are unconnected with the incinerator
and are responsible for the excess. Choosing between these
scenarios is difficult and must be done on epidemiological as
well as statistical grounds. We finally note that the level of
sophistication of the analysis will be strongly influenced by
the quality of the data.

[Received September 1997. Revised July 2000.]
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